term_ri.f_ig()#
- classmethod term_ri.f_ig(basis, fname='ri', ig_concentration=1.0, ig_scale=0.005, inference=MCMCSpec(kernel=<class 'liesel.goose.nuts.NUTSKernel'>, kernel_kwargs={}, kernel_group=None, jitter_dist=None, jitter_method='additive'), variance_value=100.0, variance_jitter_dist=None, coef_name=None)[source]#
Construct a random-intercept term with an inverse-gamma variance prior.
This convenience constructor creates a
term_ri
and attaches a variance parameter with an Inverse-Gamma prior. The variance is transformed into a scale variable and used to scale the group coefficients. An MCMC inference specification for the variance is set up using a Gibbs kernel by default.- Parameters:
basis (
Basis
) – Basis encoding integer group labels.fname (
str
) – Prefix used to build the term name (default'ri'
). (default:'ri'
)ig_concentration (
float
) – Shape parameter for the Inverse-Gamma prior on the variance. (default:1.0
)ig_scale (
float
) – Scale parameter for the Inverse-Gamma prior on the variance. (default:0.005
)inference (
Any
) – Inference specification for the coefficient variable. (default:MCMCSpec(kernel=<class 'liesel.goose.nuts.NUTSKernel'>, kernel_kwargs={}, kernel_group=None, jitter_dist=None, jitter_method='additive')
)variance_value (
float
) – Initial value for the variance parameter. (default:100.0
)coef_name (
str
|None
) – Optional human-readable name for the coefficient variable. (default:None
)
- Return type:
- Returns:
A configured random-intercept term with variance and scale
variables attached.