term_ri.f_ig()#
- classmethod term_ri.f_ig(basis, fname='ri', ig_concentration=1.0, ig_scale=0.005, inference=MCMCSpec(<class 'liesel.goose.nuts.NUTSKernel'>, self.kernel_group=None), variance_value=100.0, variance_jitter_dist=None, coef_name=None)[source]#
Construct a random-intercept term with an inverse-gamma variance prior.
This convenience constructor creates a
term_riand attaches a variance parameter with an Inverse-Gamma prior. The variance is transformed into a scale variable and used to scale the group coefficients. An MCMC inference specification for the variance is set up using a Gibbs kernel by default.- Parameters:
basis (
Basis) – Basis encoding integer group labels.fname (
str) – Prefix used to build the term name (default'ri'). (default:'ri')ig_concentration (
float) – Shape parameter for the Inverse-Gamma prior on the variance. (default:1.0)ig_scale (
float) – Scale parameter for the Inverse-Gamma prior on the variance. (default:0.005)inference (
Any) – Inference specification for the coefficient variable. (default:MCMCSpec(<class 'liesel.goose.nuts.NUTSKernel'>, self.kernel_group=None))variance_value (
float) – Initial value for the variance parameter. (default:100.0)coef_name (
str|None) – Optional human-readable name for the coefficient variable. (default:None)
- Return type:
- Returns:
A configured random-intercept term with variance and scale
variables attached.