LocScalePTM.run_mcmc()#
- LocScalePTM.run_mcmc(seed, warmup, posterior, num_chains=4, fast_warmup=0.5, thinning_posterior=1, thinning_warmup=1, warm_start=True, which=None, strategy='iwls-nuts', cache_path=None, apply_jitter=False, **initialization_kwargs)[source]#
Run MCMC sampling and return sampling results.
- Parameters:
seed (
int
) – MCMC scheduling parameters: seed and durations.warmup (
int
) – MCMC scheduling parameters: seed and durations.posterior (
int
) – MCMC scheduling parameters: seed and durations.num_chains (
int
) – Number of parallel chains to run. (default:4
)strategy (
Literal
['iwls-nuts'
,'iwls_fixed'
,'iwls_fixed-nuts'
,'nuts'
,'iwls-iwls_fixed'
,'manual'
]) – Which kernel strategy to use for sampling. Seesetup_default_mcmc_kernels()
. (default:'iwls-nuts'
)cache_path (
str
|Path
|None
) – If provided, load/save cached sampling results. (default:None
)apply_jitter (
bool
) – Whether to apply initial jitter to chain initialisations. Only has an effect if jittering is specified in theliesel.goose.MCMCSpec
for any one variable. Think of this rather as an off-switch than an on-switch. (default:False
)warm_start (
bool
) – If True, the model will be initialized by finding posterior modes viainitialize()
. (default:True
)**initialization_kwargs – Forwarded to
initialize()
whenwarm_start
is True.
- Return type:
SamplingResults
- Returns:
SamplingResults – The
liesel.goose.SamplingResults
sampling results object containing chains and diagnostics.