ScaleWeibull#
- class liesel_ptm.ScaleWeibull(value, scale, concentration=0.5, name='', inference=None, bijector=None, role='hyperparam', clip_min='default')[source]#
Bases:
Var
A variable with a Weibull prior on its square.
- Parameters:
value (
Any
) – Initial value of the variable.concentration (
float
|Var
|Node
) – Concentration parameter. (default:0.5
)scale (
float
|Var
|Node
) – Scale parameter.name (
str
) – Name of the variable. (default:''
)inference (
Any
) – Inference type. (default:None
)bijector (
Bijector
|None
) – A tensorflow bijector instance. If a bijector is supplied, the variable will be transformed using the bijector. This renders the variable itself weak, meaning that it is a deterministic function of the newly created transformed variable. The prior is transferred to this transformed variable and transformed according to the change-of-variables theorem. (default:None
)clip_min (
Union
[Literal
['default'
],float
,Any
]) – Values very close to zero will be soft-clipped to this value to avoid numerical instability. For 32-bit floats, we use a default ofjnp.sqrt(jnp.exp(-9.0))
; for 64-bit floats we usejnp.sqrt(jnp.exp(-11.0))
. (default:'default'
)
- variance_param#
The internal variance parameter (square of the reported scale). This is an
lsl.Var
created as the latent variance parameter.
- bijector#
The bijector passed to the constructor (or
None
). When present, the bijector was applied to the variance parameter and the public variable becomes a deterministic transform of that parameter.
Methods
Attributes