LocScaleTransformationDist#
- class liesel_ptm.LocScaleTransformationDist(coef, loc, scale, bspline, parametric_distribution=<class 'tensorflow_probability.substrates.jax.distributions.normal.Normal'>, validate_args=False, allow_nan_stats=True, name='LocScaleTransformationDist', centered=False, scaled=False, batched=True, reference_distribution=<tfp.distributions.Normal 'Normal' batch_shape=[] event_shape=[] dtype=float32>)[source]#
Bases:
TransformationDistLocation–scale specialization of
TransformationDist.Uses a Normal parametric layer with location
locand scalescale, combined with a spline transformation and reference Normal(0, 1).- Parameters:
coef (
Any) – Coefficients for the spline basis.loc (
Any) – Location parameter for the Normal layer.scale (
Any) – Scale parameter for the Normal layer.bspline (
PTMSpline|OnionSpline) – Spline object providing the transformation.validate_args (
bool) – Whether to validate input arguments. (default:False)allow_nan_stats (
bool) – Whether to allow NaN statistics. (default:True)name (
str) – Name of the distribution. (default:'LocScaleTransformationDist')centered (
bool) – If True, the transformation is centered. (default:False)scaled (
bool) – If True, the transformation is scaled. (default:False)batched (
bool) – If True, use batched computations. (default:True)
Notes
Inherits public attributes from
TransformationDist.Methods
Invert the location–scale normalization.
Apply location–scale normalization and its log-determinant.
Attributes