PTMCoef.new_rw1_sumzero_wb()#
- classmethod PTMCoef.new_rw1_sumzero_wb(knots, wb_scale, inference=None, scale_inference=None, name='', scale_penalty=True, diagonalize_penalty=True, role='transformation_coef', scale_bijector=<tfp.bijectors.Exp 'exp' batch_shape=[] forward_min_event_ndims=0 inverse_min_event_ndims=0 dtype_x=? dtype_y=?>)[source]#
Create RW1 sum-to-zero coefficients with a Weibull prior on the random walk variance.
- Parameters:
knots (
Any
) – Knot vector for the spline basis.wb_scale (
float
) – Scale parameter for the Weibull prior.inference (
Any
) – Optional inference specification for the latent parameter. (default:None
)scale_inference (
Any
) – Optional inference for the scale variable. Will be passed to the inference argument ofScaleWeibull
, thus acting on the level of the variance paramter (not the scale parameter). (default:None
)name (
str
) – Optional base name for created variables. (default:''
)scale_penalty (
bool
) – Whether to scale the penalty matrix to unit infinity norm. (default:True
)diagonalize_penalty (
bool
) – Whether to diagonalize the penalty via a eigenvalue decomposition. (default:True
)role (
str
) – Role assigned to the latent coefficient variable. (default:'transformation_coef'
)scale_bijector (
Bijector
|None
) – Optional bijector applied to the scale variable. Will be passed to the bijector argument ofScaleWeibull
, thus acting on the level of the variance paramter (not the scale parameter). (default:<tfp.bijectors.Exp 'exp' batch_shape=[] forward_min_event_ndims=0 inverse_min_event_ndims=0 dtype_x=? dtype_y=?>
)
- Return type:
Self
- Returns:
PTMCoef – Configured coefficient with a Weibull variance parameter.