ScaleInverseGamma#
- class liesel_ptm.ScaleInverseGamma(value, concentration, scale, name='', inference=None, bijector=None, role='hyperparam')[source]#
- Bases: - Var- A variable with an Inverse Gamma prior on its square. - Parameters:
- value ( - Any) – Initial value of the variable.
- concentration ( - float|- Var|- Node) – Concentration parameter of the inverse gamma distribution. In some parameterizations, this parameter is called- a.
- scale ( - float|- Var|- Node) – Scale parameter of the inverse gamma distribution. In some parameterizations, this parameter is called- b.
- name ( - str) – Name of the variable. (default:- '')
- inference ( - Any) – Inference type. (default:- None)
- bijector ( - Bijector|- None) – A tensorflow bijector instance. If a bijector is supplied, the variable will be transformed using the bijector. This renders the variable itself weak, meaning that it is a deterministic function of the newly created transformed variable. The prior is transferred to this transformed variable and transformed according to the change-of-variables theorem. (default:- None)
 
 - variance_param#
- The internal variance parameter (square of the reported scale). This is an - lsl.Varcreated as the latent variance parameter.
 - bijector#
- The bijector passed to the constructor (or - None). When present, the bijector was applied to the variance parameter and the public variable becomes a deterministic transform of that parameter.
 - Methods - Attributes 
