PTMCoef.new_rw1_sumzero_ig()#
- classmethod PTMCoef.new_rw1_sumzero_ig(knots, ig_concentration, ig_scale, inference=None, name='', scale_penalty=True, diagonalize_penalty=True, role='transformation_coef')[source]#
Create RW1 sum-to-zero coefficients with an inverse-gamma prior on the random walk variance.
- Parameters:
knots (
Any) – Knot vector for the spline basis.ig_concentration (
float) – Concentration parameter for the inverse-gamma prior.ig_scale (
float) – Scale parameter for the inverse-gamma prior.inference (
Any) – Optional inference specification for the latent parameter, aliesel.goose.MCMCSpecobject. By default, uses a Gibbs sampler. (default:None)name (
str) – Optional base name for created variables. (default:'')scale_penalty (
bool) – Whether to scale the penalty matrix to unit infinity norm. (default:True)diagonalize_penalty (
bool) – Whether to diagonalize the penalty via a eigenvalue decomposition. (default:True)role (
str) – Role assigned to the latent coefficient variable. (default:'transformation_coef')
- Return type:
Self- Returns:
PTMCoef – Configured coefficient with an inverse-gamma variance parameter.