VarWeibull#
- class liesel_ptm.VarWeibull(value, scale, name, bijector=<tfp.bijectors.Softplus 'softplus' batch_shape=[] forward_min_event_ndims=0 inverse_min_event_ndims=0 dtype_x=? dtype_y=?>)[source]#
Bases:
Var
A variable with a Weibull prior.
- Parameters:
value – Initial value of the variable.
concentration – Concentration parameter of the inverse gamma distribution. In some parameterizations, this parameter is called
a
.scale – Scale parameter of the inverse gamma distribution. In some parameterizations, this parameter is called
b
.name – Name of the variable.
bijector – A tensorflow bijector instance. If a bijector is supplied, the variable will be transformed using the bijector. This renders the variable itself weak, meaning that it is a deterministic function of the newly created transformed variable. The prior is transferred to this transformed variable and transformed according to the change-of-variables theorem. (default:
<tfp.bijectors.Softplus 'softplus' batch_shape=[] forward_min_event_ndims=0 inverse_min_event_ndims=0 dtype_x=? dtype_y=?>
)
Methods
Returns posterior samples of this variable.
Attributes
The transformed variable (if any).